
Strong ETH Holds for Regular Resolution

Chris Beck∗
Princeton University

cbeck@princeton.edu

Russell Impagliazzo†
University of California, San Diego

russell@cs.ucsd.edu

ABSTRACT
We obtain asymptotically sharper lower bounds on resolu-
tion complexity for k-CNF’s than was known previously. We
show that for any large enough k there are k-CNF’s which
require resolution width (1− Õ(k−1/4))n, regular resolution

size 2(1−Õ(k−1/4))n, and

general resolution size (3/2)(1−Õ(k−1/4))n.

Categories and Subject Descriptors:

Categories and Subject Descriptors
F.0 [Theory of Computation]: GeneralI.2.3[Artificial In-
telligence]: Deduction and Theorem Proving;

General Terms: Theory

Keywords: Proof complexity, resolution, lower bounds,
quantum classical separation

1. INTRODUCTION
The SAT problem is a canonical NP-complete problem.

Non-trivial algorithms for SAT have ramifications both for
the theory of computation and in applications such as hard-
ware and protocol verification and planning. Despite a huge
amount of attention from both theoretical and empirical
perspectives, the exact difficulty of SAT remains somewhat
mysterious. While quantitative improvements in SAT al-
gorithms continue to be made, in many ways a wide vari-
ety of different algorithmic techniques have yielded similiar
time bounds in a qualitative sense. The Exponential Time
Hypothesis (ETH) and Strong Exponential Time Hypoth-
esis (SETH) were introduced to give a precise meaning to
the question of whether further improvements will be only
quantitative, or substantially different [16]. These hypothe-
ses have beeen shown to have other significant consequences

∗Research supported by NSF grants CCF-0832797, CCF-
1117309, The Simons Foundation.
†Research supported by NSF grants DMS-0835373, CCF-
0832797, and The Oswald Veblen Fund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1âĂŞ4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

in complexity, such as limits on the k-SUM problem from
computational geometry, exponential algorithms for other
NP-complete problems, limits to improving algorithms in
parameterized complexity, and so on. Formally, ETH is the
statement that, for k ≥ 3, k-CNF SAT does not have algo-
rithms running in time 2o(n). Closely related is the strong
ETH – that the savings possible for k-SAT goes to 0 as
k goes to infinity, or, equivalently, that k(n)-SAT does not

have deterministic algorithms in time 2(1−o(1))n for any func-
tion k(n) = ω(1). That is, it is not even possible to get a
constant polynomial advantage over brute force search that
is indendent of k.

Both forms of the conjecture have a natural appeal, al-
though there is admittedly little formal evidence for either.
However, there are an increasing variety of interesting and
non-trivial algorithms for SAT that seem to use unrelated
algorithmic techniques ([19, 18, 14, 27, 15]), but all have
roughly the same savings over exhaustive search : Θ(1/k)
fractional savings over exhaustive search for k-SAT.

Empirically, it has also been observed that even tuned
SAT solvers that solve 3-SAT formulas with millions of vari-
ables have difficulty with even small random k-SAT formu-
las for moderate k, such as 5 or 6 [25]. So SETH seems
at least to be true for commonly used algorithms. Since
we do not know how to show that problems in NP require
even super-polynomial worst-case complexity, it seems that
we are incredibly distant from any possible proof of ETH or
SETH.

The challenge of lower bounds is to reason about arbitrary
algorithms, including ones that are counter-intuitive. We
might be able to confirm these hypotheses for at least some
categories of algorithms that work in an intuitive fashion
and are similar to those in use. Propositional proof com-
plexity offers a general technique to do this. Many algo-
rithmic techniques, when run on an unsatisfiable instance,
implicitly define a “proof” that no solution exists, that can
be formalized in a corresponding proof system1. Then size

1While of course the computation transcript of any correct
deterministic algorithm is in some sense a proof, in general
this need not correspond to a propositional proof of any
kind. It simply turns out that most if not all of the al-
gorithms we care about and use can be broken down into a
series of logical steps and deductions; one explanation is that
generally we are taught to write and think about programs
in a way so that there will be a simple proof of correctness of
the algorithm at the end, and if there is then it will induce
logical proofs of correctness for every input which roughly
follow the transcript. However, if a turing machine correctly
decides a language, but its correctness is e.g. independent

lower bounds on the minimum proofs for a tautology in the
proof system provide a lower bound on the time required by
any algorithm in the family on the negation of the tautology.
Using this method, ETH has been established for any algo-
rithm that can be formalized within the resolution system,
which includes many of the most successful empirical SAT-
solving techniques. More precisely, lower bounds of the form
2Ω(n) are known for many natural proof systems like Reso-
lution and Polynomial Calculus [30, 17]. which correspond
naturally to important families of SAT algorithms.(Weakly
exponential lower bounds exp(nε) are also known for more
exotic proof systems.) So we at least know that to negate
ETH, we need to go beyond some of the standard algorithm
design methods.

This raises the question of whether we can also get results
establishing Strong ETH for similar classes of algorithms.
A first result along these lines was by Pudlák and Impagli-
azzo [20], who showed that tree-like resolution requires size

2(1−ε)n for any ε, for k-CNFs of size cn where c, k are func-
tions of ε. Here, we get a similar lower bound for regular
resolution, a sub-system of resolution that is strictly more
powerful than tree-like resolution and which formalizes algo-
rithms using the Davis-Putnam procedure [8]. Specifically,
we show that there are k-CNF formulas which require reg-

ular resolution proofs of size 2(1−Õ(k−1/4))n. In particular,
we get a somewhat improved and simplified version of the
Pudlák-Impagliazzo lower bound. While we have not been
able to show the same for general resolution, we do get a
substantially improved exponential lower bound for general
resolution, which approaches (3/2)n as k grows. An inter-
esting interpretation is that this class of algorithms are now
provably slower than Grover’s quantum SAT algorithm [11].

The exact complexity of SAT has taken on an even greater
significance in theoretical computer science due to the re-
cent results of Williams [31], that show that even minute
savings for circuit SAT can be used to prove circuit lower
bounds. While this holds for general circuit SAT rather
than k-SAT, we can often relate SAT problems for different
classes of circuits. For example, if the AC0 SAT algorithm
of Impagliazzo, Matthews and Paturi [15] were to be sub-
stantially improved, it can be proved using Williams’ results
that NEXP 6⊆ NC1.

2. TECHNIQUES
Resolution has been intensively studied at least since the

work of Davis and Putnam [8] in the early sixties. Despite
its apparent simplicity, no exponential lower bounds were
known until Haken’s result [12] in 1985. Today there remain
only a small number of techniques to give lower bounds in
Resolution – Random Restrictions [12, 2], the Size-Width
Tradeoffs [4], and the Pseudowidth technique which origi-
nally appeared in work of Raz [21] and was further developed
by Razborov [22, 23].

One of the fundamental building blocks of previous lower
bounds research has been resolution width lower bounds for

of ZFC or similar, we shouldn’t necessarily expect that the
transcripts of this turing machine correspond to intelligible
proofs. This is one way that the goals of proof complexity
seem less ambitious than the goals of some lower bounds
areas, since it only applies to algorithms that are at least
somewhat intuitive. On the other hand, proof complexity
essentially permits algorithms which are nondeterministic,
so there is also some added difficulty.

systems of F2-linear equations; whether studied in the form
of Tseitin tautologies, or random k-XOR CSPs, this result
as appears in [4, 5] is essential to a great deal of subse-
quent work, in polynomial calculus [3], Lasserre hierarchy
lower bounds [26, 10], and other results. Generally speak-
ing, expanding systems of F2 linear equations require reso-
lution width Ω(n). However, the width to refute these is not
(1− ε)n as one might hope (for proving lower bounds), but
rather there is always an upper bound of n/2 + o(n). Ben-
Sasson and Impagliazzo [3] gave a probabilistic construction

of a width n/2, size 2n/2 resolution refutation of any such
system, based on adding (a subset of) the F2 equations in a
random order to obtain 1 = 0 and simulating the linear al-
gebra proof in resolution. They showed that with high prob-
ability, no intermediate equation has more than n/2 + o(n)
variables, due to random cancellations in the sum, thus the
simulation results in a resolution proof of the claimed pa-
rameters.

Impagliazzo and Pudlák’s result is also for a family of F2

linear equations, so to obtain size lower bounds of 2(1−ε)n

they had to do significant work to overcome the fact that
the width lower bounds are only n/2. They analyzed proof
size via a Prover Adversary game which they introduced,
and their technique works by considering not just the widest
clause in the proof, but also for a series of subsequent smaller
clauses which occur in the proof. They are able to show that
the total combined width of all such clauses encountered
approaches n, and their technique exploits this (implicitly)
to obtain their lower bound.

In this paper, we consider equations over Fp rather than
F2. When we add random linear combinations of equations
over Fp, a variable cancels with probability only 1/p rather
than 1/2, so the construction which gave a width upper
bound of n/2 for F2 in this case can only yield (1 − 1/p)n.
Thus it is natural to guess that as p gets large the true
width will approach n. One apparent drawback of this is
that encoding Fp equations as boolean CSPs can result in
significant complications, and it seems inevitable that one
will have to think hard about partially constrained Fp linear
systems and technical results from additive combinatorics.
By a judicious choice of encoding scheme, we manage to
avoid this and obtain an unexpectedly simple proof.

The width lower bound (1− ε)n which we thus obtain im-
mediately implies the tree-like size lower bounds which we
desire. To extend this to DAG-like proof systems, a natural
idea is to employ a generalization of the Impagliazzo Pudlák
prover adversary game [20] which was developed in [1], there
with the goal of sharp time space tradeoffs in Regular Res-
olution. In this argument, a probabilistic adversary inter-
acts with the proof, inducing a distribution of random paths
through the proof DAG. A counting argument based on this
can be used to obtain size lower bounds, in a manner simi-
lar to the bottleneck counting argument first introduced by
Haken [12]. In the full result of [1], this adversary is replaced
with a random restriction argument in order to obtain re-
sults for General Resolution. In this work, we succeeded
in adapting the techniques there to obtain sharp size lower
bounds in regular resolution, but also we managed to dra-
matically simplify it in this context.

Finally, we introduce new random restriction techniques
which are useful to get stronger lower bounds in general res-
olution. Rather than adhering to the usual paradigm of us-

ing random restrictions to kill wide clauses, we examine the
width lower bound more carefully to give a tighter analysis.

In the next section we define the relevant proof systems
and the preliminaries which we will need. In section (3), we
prove the width lower bound, which implies the tree-like size
bound. In section (4), we give an overview of the techniques
for the main result, and together with a lemma from section
(3) deduce the size lower bound for resolution.

3. PRELIMINARIES

3.1 Basic Definitions
We consider Boolean formulas over a set of variables
{x1, . . . , xn}. As usual, a literal is a Boolean variable xi
or its negation xi, a clause is a disjunction of literals, and
a CNF is a conjunction of clauses. We think of clauses as
being specified by their sets of literals, and CNFs as specified
by their sets of clauses. For a clause C, we use the notation
Vars(C) for the set of variables appearing in C. The width
w(C) of a clause C is |Vars(C)| and the width of a set or
sequence of clauses F , is the maximum width of clauses in
F . The size of a CNF formula F is the total number of
literal occurrences in the formula, i.e.,

∑
C∈F w(C).

One of the simplest and most widely studied propositional
proof systems is resolution, which operates with clauses and
has one rule of inference, the resolution rule: A∨x B∨ x

A∨B .
We say that the variable x is resolved in this instance of
the resolution rule. A resolution refutation of a CNF for-
mula (a set of clauses) is a sequence of clauses ending in
the empty clause ⊥, (representing the constant truth value
“false”), each of which is either one of the clauses of the for-
mula (an “axiom”) or follows from two earlier clauses via
the resolution rule. (The term resolution proof is used more
generally to refer to any inference of this sort that may not
necessarily result in ⊥.) Every resolution proof naturally
corresponds to a directed acyclic graph (DAG), termed the
proof DAG, in which every clause derived via the resolution
inference rule has a directed edge between a derived clause
and each of its antecedents, oriented to show dependence.
(Note that, formally, a resolution proof corresponds to one
of possibly many topological sorts of its proof DAG.)

The size or length of a resolution proof is the total number
of clauses in the proof.

A resolution proof is tree-like if its proof DAG has the
structure of a tree. A resolution proof is regular if along
each path in the proof DAG, each variable is resolved at
most once. The unrestricted model is often called general
resolution for contrast with regular and tree-like resolution.

It is easy to see that a tree-like proof of minimum size is
regular without loss of generality.

Clauses are permitted to appear multiple times in a reso-
lution proof; in general resolution this is unnecessary when
only proof size is a concern, but in restricted forms this can
become important.

Resolution is sound and complete in that every CNF for-
mula is unsatisfiable if and only if it has a (tree-like) resolu-
tion refutation.

A restriction is a partial assignment of truth values to vari-
ables of a formula, resulting in some simplification. Formally
a restriction is a mapping ρ : X → {0, 1, ?}. Restrictions on
X can be identified with partial assignments on X by view-
ing unassigned inputs as being mapped to ? and vice versa.
For a partial assignment σ with σ(xi) = ? for some variable

xi, we will sometimes use the notation e.g. σ ∪ {xi = 0} to
denote the same partial assignment with xi 7→ 0 instead.

The restriction of a clause C by ρ, denoted by C|ρ is
the clause obtained from C by setting the value of each
x ∈ ρ−1({0, 1}) to ρ(x), and leaving each x ∈ ρ−1(?) as
a variable. The restriction of a set of clauses is defined by
restricting each one. The restriction of a resolution refuta-
tion of a CNF is a refutation of its restriction.

4. EXPANDING MATRICES
As alluded to in the introduction, our tautologies will be

based on systems of Fp linear equations, for increasingy large
values of p. We plan to simulate these in resolution, which
has boolean variables, by associating a collection of bits to
each Fp variable. One natural strategy to refute such sys-
tems in resolution is to simulate an algebraic argument; if
such a linear system is unsatisfiable, it must be possible to
add multiples of the equations together in some order to
derive a contradictory equation. Such a derivation can be
simulated in resolution by having a collection of clauses for
each equation, whose conjunction is semantically equivalent
to the equation. If we only add two equations together at
a time, the simulation may follow this by resolving some
combinations of their underlying clauses to produce a set
of clauses semantically equivalent to the resulting equation.
This is easy to see, particularly by appealing to the com-
pleteness of resolution.

A little thought shows that the cost of this simulation
will be essentially dominated by the size of the support of
the largest intermediate equation which we hold in memory;
for an equation with k variables, we will need a number of
underlying clauses which is exponential in k. Thus for a
system of equations to be hard for resolution, it should be
the case that any linear algebra refutation must contain an
intermediate equation of very large support. The previous
work we mentioned earlier, which has focused on the F2 case,
has produced techniques to prove that this property must
hold for expanding linear systems, that is, linear systems
whose underlying matrix is an expander graph, and this is
used crucially to obtain lower bounds.

In this section and the next, we will show how to con-
struct linear systems over Fp, which are contradictory, yet
any linear algebra refutation must at some point contain an
equation which contains almost all of the variables. In the
next section we will also show how to translate these into
tautologies that are difficult for resolution.

We give the following variation on the concept of an ex-
panding matrix.

Definition 4.1. Say that a matrix A over a field Fp is an
Fp-expander with parameters (r1, r2, c) if, for every column
vector v of support size r1 ≤ |v| ≤ r2, the support of Av
satisfies c ≤ |Av|.

When A is the incidence matrix of a graph, thought of
over F2, and v is the characteristic vector of a set of ver-
tices, it is easy to see that Av indicates the boundary edges,
so Fp expansion generalizes the familiar notion from graph
theory. On the other hand, whereas for graphs we can only
reasonably hope that balanced cuts will contain say half of
the edges, from Fp expanders we can hope for more.

In particular for a random sparse n × n Fp-matrix, and
a small constant δ, we could reasonably expect to obtain

a (δn, 3δn, (1 − 2/p)n)-expander. As a rough heuristic in
support of this, the function computed by this matrix will
look like a random map, at least on input vectors of rela-
tively large hamming weight. At the same time, there are
relatively few vectors in Fnp of hamming weight between δn
and 3δn. Instead, the typical vectors have weight (1−1/p)n.
Thus the chance that every vector of weight between δn, 3δn
maps to such a vector is high.

For our purposes it is not important to get a deterministic
construction of Fp expanders, so we prove only existence by
a probabilistic argument.

Lemma 4.2. Let d be a sufficiently large integer and p a
sufficiently large prime, at most O(

√
d/ log d). For any large

enough n, there is an n+ 1× n matrix over Fp such that

• Each row is supported on exactly d entries.

• The matrix is an (r1, r2, c)-Fp-expander, where

– r1 = n/
√
d,

– r2 = 3n/
√
d,

– c = (1−O(1/p))(1−O(1/
√
d))n).

• No nontrivial linear combination of fewer than 3n/
√
d

rows is the zero vector.

Proof. The proof is in two steps. First, we see that the
support of the random matrix is a classical expander, as
is well known; we will actually need this to hold for two
different ranges of the parameters. Then we show that con-
ditioned on the support being expanding, over the remain-
ing randomness we almost surely have an Fp expander as
needed.

Let B denote a random {0, 1}-valued matrix of dimensions
n + 1 × n, in which rows are independently chosen from
the uniform distribution on vectors of support d, and let A
denote the random Fp matrix in which nonzero Fp values
are substituted for the ones of B independently.

First we show that with high probability over B, any set
S of exactly n/

√
d rows has ones in at least (1−O(1/

√
d))n

columns. For any column, the chance that it is missed is at
most (1− d/n)|S| ≤ exp(−d|S|/n). The chance that any set
of δn columns are missed is therefore at most exp(−dδ|S|+
H(δ)n), where H is the binary entropy function, so for δ =
O(1√

d
), the chance that any set S does not expand so much

is � 2−n. We conclude that with high probability every set
of at least n/

√
d rows has ones in at least (1 − O(1/

√
d))n

columns.
Assuming this holds for B, we now show that with high

probability over A, A is (n/
√
d, 3n/

√
d, (1 − O(1/p))(1 −

O(1/
√
d))n)-Fp expanding. Fix any column vector v of sup-

port size n/
√
d ≤ |v| ≤ 3n/

√
d. The indices of Av are dis-

tributed independently over the coins of A, some distributed
uniformly over Fp and some distributed as the constant zero.
By the assumption for B, the number which are distributed
uniformly is at least (1−O(1/

√
d))n. We expect only a frac-

tion 1/p of these to be zero, and by standard tail bounds on
the binomial distribution, we conclude that for any constant
c0, there exists a constant c1 so that the probability to get
fewer than (1 − c1/p)(1 − O(1/

√
d))n nonzero entries is at

most exp(−c0(1−O(1/
√
d))n/p).

Now we simply take a union bound over the number of
vectors v to consider. This number is at most(

n

3n/
√
d

)
· (p− 1)3n/

√
d,

the log of which is asymptotically at most n/
√
d · (log d +

log p). Therefore so long as 1/p = Ω(1/
√
d · (log d+ log p)),

we can take c0 large enough so that the tail bound dominates
the union bound and A is Fp-expanding asymptotically al-

most surely. Taking p = O(
√
d/ log d) suffices.

Finally, by a standard calculation it can be shown that sets
of rows of size at most ≤ n/

√
d expand by a factor Ω(

√
d) at

least in B, and that in this case, the probability over A that
any vector supported on such a small set does not have image
equal to zero is very small, using arguments similar to the
above. If vectors supported on fewer than n/

√
d positions

don’t have image zero, and Fp expansion holds between that

value and 3n/
√
d, then no vector of support ≤ 3n/

√
d has

image zero, so no subset of at most 3n/
√
d rows has the zero

vector as a nontrivial linear combination.

5. WIDTH BOUND
Now we will be defining unsatisfiable linear systems using

Fp expanders.
To obtain width lower bounds, we use a technique based

on the semantic measure of proof lines, which was standard-
ized by Ben-Sasson and Wigderson.

Definition 5.1. The semantic measure of a proposition
P with respect to a set of propositions A = {A1, . . . , Am} is

µA(P) := min
S⊆[m]:

∧
i∈S Ai|=P

|S| ,

that is, the minimal number of propositions from A which
semantically implies P .

Observation 5.2 ([4]). Let φ denote a minimally un-
satisfiable CNF consisting of m clauses.

• For any clause C of φ, µφ(C) = 1.

• For any inference C1, C2 ` C3, µ(C3) ≤ µ(C1)+µ(C2).

• µ(⊥) = m.

As an immediate corollary of these observations, in any
refutation, in any proof system, of any minimally unsatis-
fiable set of m constraints, there must exist a proof line C
such that µ(C) ∈ [m/3, 2m/3].

It is easy to see that for any matrix A as in the lemma,

we can choose a vector ~b such that A~y = ~b is not satisfiable.
Such a system will be close to minimally unsatisfiable, since
if any subset S of the equations is contradictory, there must
be a linear combination of them which produces 0 = 1, and
we argued before that this does not happen when |S| ≤
3n/
√
d.

Claim 5.3. Let p be a large enough prime. There are

unsatisfiable linear systems A~y = ~b consisting of n + 1 Fp-
equations on n variables, each containing at most p2 vari-
ables, in which A is an (γn, 3γn, (1 − c2γ)n)-Fp expander,
and no subset of ≤ 3γn equations is contradictory, where c2
is a constant and γ := Õ(1/p)). (The Õ notation hides log
factors.)

To express an Fp expanding system as a CNF, we en-
code variables as follows. For each Fp variable yi we will
have γ−1p boolean variables xij , thought of as taking values
{0, 1}, with the intended meaning that yi =

∑
j xij mod p.

Thus, yi does not determine the xij , and if a partial assign-
ment π to the xij assigns only γ−1p− p variables, yi is still
completely unconstrained.

Definition 5.4. For A~y = ~b an Fp linear system over
variables y1, . . . , yn, let CNF φ denote the following con-
junction in variables xij , 1 ≤ i ≤ n, 1 ≤ j ≤ γ−1p:

m∧
k=1

{∑
i

Ak,i
∑
j

xij = bk (mod p)

}
.

Naturally we replace each equation above with its trivial CNF
representation, which has only `pγ−1 variables, if each equa-
tion in the linear system has only ` variables.

Theorem 5.5. Let φ be a CNF corresponding to a lin-
ear system as in Claim 5.3 via Definition 5.4, which is on
N = n · Õ(p2) variables. Then any resolution refutation of

φ requires width (1− Õ(1/p))N , and φ is an Õ(p4)-CNF.

Proof. Let C be any clause containing fewer than (1 −
(c2 + 1)γ) of the boolean variables. We show that if C has
semantic complexity between 3γn/2 and 3γn, we contradict
Fp-expansion. By Observation 5.2 and the remarks immedi-
ately following it, this completes the proof.

By a Markov argument, there are at least a fraction c2γ
of the yi variables such that at least a fraction γ of their xi,j
are unassigned. Let ρ denote the restriction corresponding
to ¬C.

Say that a yi variable is free if at least p of its xi,j variables
are unassigned by ρ, and let ρ∗ denote any extension of
ρ whose domain is the domain of ρ, plus all xi,j variables
corresponding to non-free yi’s.

Then in terms of the yi variables, ρ∗ corresponds seman-
tically to a restriction which assigns all non-free variables,
and leaves the free variables unset.

Thus, a subset {Ai}i∈S of the equations semantically im-
plies C if and only if for every such ρ∗, {Ai|ρ∗}i∈S implies
a contradiction, and it minimally implies C if and only if
every Ai is needed for some ρ∗.

An F-linear system is unsatisfiable if and only if there is
an F-linear combination in the equations which gives 1 = 0.
If for some equation E|ρ∗ = (1 = 0), then E only contains
the variables assigned by ρ∗. That is, for each ρ∗, there
exists a linear combination of the axioms {Ai}i∈S supported
only on the non-free variables of ρ, and for every i ∈ S, by
minimality, some ρ∗’s combination has a nonzero coefficient
for Ai.

Therefore, take a random linear combination of the equa-
tions corresponding to each ρ∗. Then the resulting equation
is supported again on only the non-free variables of ρ. We
show that this equation is a nontrivial linear combination of
many of the Ai, contradicting Fp-expansion. Each Ai oc-
curs in some equation, thus, in the resulting random linear
combination, its coefficient is distributed uniformly over Fp.
By averaging, there exists such a combination which results
in at least (1 − 1/p) of the Ai having nonzero coefficients.
Thus there is a linear combination supported on between
(1 − 1/p)(3/2)γn ≥ γn and 3γn equations of A with fewer
than (1−c2γ) of the yi variables, contradicting Fp expansion
as desired.

Since width is at most the base two log of Tree-like Size [4],

this immediately implies 2(1−o(1))n lower bounds for tree-like
resolution, as mentioned previously.

6. REGULAR RESOLUTION
To obtain size lower bounds for Regular Resolution, we

adapt and simplify the probabilistic adversary technique in-
troduced in [1]. At a high level, this is a variation on the
bottleneck counting argument introduced by Haken [12]. In
this argument, a rule is given which maps assignments to
particular clauses in the proof, at which significant “work”
is done thinking about this assignment. The task is to show
that we can map a large number of assignments in such a
way that only a small number map to any particular clause,
which implies that there are many clauses. In Haken’s work
this map is described explicitly – in the more modern form of
the argument, due to Beame and Pitassi, a random restric-
tion argument is used to hide these details. The bottleneck
counting argument is of fundamental importance in com-
putational complexity theory; besides underlying much of
modern proof complexity, the bottleneck counting approach
was also employed by Cook and Haken for monotone cir-
cuit lower bounds [13], and a report of Simon and Tsai [28]
illustrated how closely related it is with the method of ap-
proximations used in other contexts. The high level plan is
executed in part using ideas from [20].

Theorem 6.1. Any regular resolution refutation of the

CNF φ of Theorem 5.5 has size at least 2(1−Õ(1/p))N where
N is the total number of variables.

Proof. We define a probabilistic process, which one may
think of as an adversary in the sense of [20], which interacts
with the proof, and which we think of as taking place at
a particular clause in the proof at every step. The process
begins at the final clause, ⊥, and in each step moves to one of
the two parents of the current clause, until at some point it
stops, at some clause somewhere in the middle of the proof.
The path which is followed by the process depends on what
the current and parent clauses look like, what the history of
the process is, and some random coins. We will show that
over the random coins of the process, the probability that it
stops at any particular clause of the proof is extremely small
– from this we will deduce that there are many clauses.

We will think of the process as building up a truth as-
signment by assigning one variable at a time – in the step
corresponding to a clause C, if C is deduced by resolving
on variable x, the process will either assign x = 0 and move
to the clause containing the literal x, or assign x = 1 and
move to the caluse containing the literal x. Thus if π de-
notes the partial assignment corresponding to all previous
assignments made by the process, it always maintains the
invariant that π falsifies the current clause. Crucially, by
regularity, the variable x is always unassigned by π.

The rule by which we will assign variable x at each step
is as follows:

• If variable x corresponds to a free Fp variable of φ (at
least p+1 of its boolean variables are unset by π), then
x is assigned randomly

• Otherwise, we choose x so as to maximize the semantic
complexity of the clause for the next round.

The crucial claim regarding this process is that in each
step, the semantic complexity of the occupied clause cannot
decrease by more than a factor of two. Let us prove this.
In the second case above, this is easy to see, because it is a
standard application of subadditivity of the semantic mea-
sure. In the first case, we claim that the semantic measure
cannot decrease at all – this is because if x corresponds to a
free variable, then the two parent clauses each semantically
entail one of C ∨x,C ∨x, but these clauses are semantically
implied by a set S of equations if and only if the correspond-
ing restrictions of S are unsatisfiable, and since x is a free
variable, the corresponding restriction in terms of the Fp
variables is the same for C,C ∨x, and C ∨x. Thus all three
of these clauses are of the same semantic complexity, and
the two parent clauses are each of at least this complexity.

Since at the beginning, the contradiction clause⊥ at which
the process begins has semantic complexity ≥ 3γn, at the
end of any path, any axiom has semantic complexity 1, and
in any step the measure at most halves, at some point in
the process we must walk to a clause of semantic complexity
between 2γn and γn. The first time that this happens, the
process is defined to stop at this clause.

What is the probability that the process stops at any par-
ticular clause C? Since π must falsify C by the time we
walk to C, the process can only walk to C if it assigns all
the variables which appear in C consistently with ¬C. By
Fp expansion and the width argument from before, C can
only have semantic complexity between γn and 2γn if at
least (1 − c2γ)n of the Fp variables are non-free under the
restriction ¬C – thus C assigns at least (1 − γ) of the bits
corresponding to these variables to particular values. All of
these bits must be queried along any path which reaches C,
and for each Fp variable, for the first (1−γ) fraction of these
bits, the process will respond randomly. In the event that
it assigns some bit incorrectly, it can never reach C, and for
each such queried bit, this happens with probability 1/2 at
least.

Definition 6.2. For any path from the root σ, and any
clause C, let freedoms(σ, i, C) denote the number

max (|Vars(C) \ dom σ| − p, 0) .

This is a lower bound on the number of bits of C which would
be responded to randomly if for example the next variables
encountered by the adversary are all elements of Vars(C) \
dom σ. Let freedoms(σ,C) denote∑

i

freedoms(σ, i, C) .

Claim 6.3. The probability that the adversary, having fol-
lowed σ, reaches C is at most

2−freedoms(σ,C) .

Proof. By induction on σ. The base case is that σ is
large and has zero freedoms with respect to C, in which
case the probability bound is trivial. Let σ be any path in
the proof, leading to a clause which is deduced by resolving
on variable x. In case that assigning x does not reduce the
number of freedoms, by inductive hypothesis applied to the
paths σ ∪ {x = 0} and σ ∪ {x = 1} the probability bound
we want holds at both of these, and by averaging it holds
for σ. In case that assigning x does reduce the number of
freedoms, the bound obtained inductively is only a factor

two worse than what we claim at σ. Since assigning x does
reduce the number of freedoms, its Fp variable is still free so
x is assigned randomly by the adversary. If the adversary
assigns x to satisfy C, then he can never reach C, so for one
of σ ∪ {x = 0}, σ ∪ {x = 1} the probability to reach C is
zero. We conclude that the probability that the adversary
reaches C from σ is two to the minus the total number of
freedoms as claimed.

Now apply the claim in case that σ is the empty path at
⊥, and with C any possible stopping point. Since the total
number of freedoms initially is at least (1 − c2γ)(1 − γ) =

(1 − O(γ)), there is at most a 2−(1−O(γ))npγ−1

probability
that the adversary stops at any particular clause C. Since
the process always stops at some clause, this implies that

there are at least 2(1−O(γ))npγ−1

clauses in any refutation of
the tautology φ, which is on npγ−1 variables.

7. GENERAL RESOLUTION
In this section, we give size lower bounds in General Res-

olution, using the analysis of the width lower bound in the
first section, together with a quantitatively improved ran-
dom restriction argument.

We can abstract the argument as follows.

Definition 7.1. For C a set of constraints in n boolean
variables x1, . . . , xn, and f : {0, 1}m → {0, 1}n a boolean
function f : ~y 7→ ~x, we define the f-substituted set of con-
straints C[f] in variables y1, . . . , ym as the set {C(f(~y)) :
C ∈ C}.

When f is n parallel copies of the parity function on `
bits, we denote this more succinctly by C[⊕`].

The idea of ⊕-substitution has been used in many con-
texts, as a tool to make formulas more difficult for restricted
models. Intuitively, it can make a formula harder because
even if C has an efficient refutation, a refutation of C[⊕`]
might not be able to simulate that refutation efficiently, since
it can’t reason directly about the bits of C. Since parity is
hard to express in CNF, one would expect that ⊕-substition
would make this simulation particularly cumbersome for res-
olution. For this and other reasons, indirection based on
parity is a common strategy to make hard formulas.

Our argument will make use of the following notion of
projection, which takes a clause in substituted variables and
extracts a new clause which captures its information about
the values of the original variables. (This definition makes
the most sense when the substitution function gives disjoint
sets of variables to each original variable.)

Definition 7.2. Let C be a clause in the variables y1, . . . , ym
of C[f]. Let C =

∨
Ci where Ci is the part of Ci in the vari-

ables corresponding to xi. Define the projection C′i of Ci
by

C′i :=

 xi Ci |= (f(~y))i = 1
xi Ci |= (f(~y))i = 0
1 otherwise

.

Define the projection C′ of C by
∨
C′i.

We observe that the semantic complexity of a clause is
unchanged by projection when the substitution function is
made up of boolean functions on disjoint inputs.

Observation 7.3. The semantic complexity of C with re-
spect to C[⊕`] is the same as the semantic complexity of C′

with respect to C.

Proof. It is easy to see that for any assignment to y1, . . . , ym
satisfying C, its image under f satisfies C′. By the defini-
tion of projection, it is also true that any assignment to
x1, . . . , xn which satisfies C′ may be lifted to an assignment
satisfying C.

Our next lemma uses this to bound the probability that
the projection of a restricted clause is wide.

Lemma 7.4. Fix any ` ≥ 2, and CNF φ in variables
x1, . . . , xn. Let ρ denote an iid random restriction which sets
the variables of φ[⊕`] to 0, 1, ? with equal probability, condi-
tioned on never setting all y variables associated to any xi
to a constant. For any clause C in the y variables, the prob-
ability that the projection C|′ρ has width at least (1−ε)n is at

most
(

2
3

)(1−ε)n`−O((2/3)`)n−O(H(ε))n
, where H is the binary

entropy function.

Proof. Fix an arbitrary clause C and consider the width
of the projection of the restricted clause, (C|ρ)′. We first
show that this is small with high probability. We can an-
alyze this by considering each variable one at a time. Let
(C|ρ)′i denote the portion of C|ρ associated to xi, as in the
definition of projection.

(C|ρ)′ =
∨
i

(C|ρ)′i .

Traditionally, restrictions are only thought to kill clauses
by setting variables of the clause to true. Thanks to the
definition of projection, we can also think of killing variables
of a clause by setting its non-variables to ?, since in this case
the projection of that portion of the restricted clause will be
trivial.

Claim 7.5. For any C,

Pr
ρ

[(C|ρ)′i 6= 1] ≤ (2/3)` · (1− (2/3)`)−1 .

Proof. For each variable in Ci, if ρ sets it oppossite to its
value in Ci, then Ci|ρ = 1, and (C|ρ)′i = 1. For each variable
yj associated to xi but not appearing in Ci, if it set to ?,
then any satisfying assignment to Ci|ρ may be flipped on this
variable, still satisfying Ci|ρ but having opposite parity, thus
Ci|ρ 6|= ⊕yj = 1, Ci|ρ 6|= ⊕yj = 0, hence (C|ρ)′i = 1. Thus if
we ignore the conditioning, the probability that (C|ρ)′i 6= 1
is at most (2/3)`. The event which we condition away has
probability at most (2/3)`, hence doing so can only increase
probabilities by a fraction (1− (2/3)`).

The width of C|′ρ is the sum of the widths of (C|ρ)′i, and ρ
acts independently on each Ci, so by a union bound over all
subsets of (1− ε)n of the variables x1, . . . , xn,

Pr
ρ

[Vars(C|′ρ) ≥ (1− ε)n] ≤

(
n

(1− ε)n

)(
(2/3)`(1− (2/3)`)−1

)(1−ε)n
.

Using the identity − ln(1− x) ≤ x+ x2 for x < 1/2, this is
upper bounded again as

≤ (2/3)(1−ε)n`−O((2/3)`)n−O(H(ε))n ,

where H is the binary entropy function. This completes the
proof of Lemma 7.4.

This can be used to obtain size lower bounds. If φ is
such that any clause of intermediate semantic complexity is
wide, then the above shows that it is very unlikely that a
restriction of a clause in a proof of φ[⊕`] has intermediate
semantic complexity.

Corollary 7.6. For any small enough ε > 0, there exist
Õ
(

1
ε4

)
-CNF formulas on n variables which have resolution

complexity at least
(

3
2

)(1−ε)n
.

Proof. First we choose ` to simplify the bound above.

Take ` = O(log 1
ε
), and using the fact that limε→0

H(ε)

ε log 1
ε

=

O(1), observe that with this choice of `, for small enough
ε, ε + 1

`

(
(2/3)` +O(H(ε))

)
= O(ε), so the above lemma

implies a probability bound of
(

2
3

)(1−O(ε))n
.

Let k = Õ
(
1/ε4

)
, and apply the lemma above when φ is

any k-CNF such that clauses of intermediate semantic com-
plexity have width at least (1−Õ(k−1/4))n = (1−ε)n, as we
obtained from Theorem 5.5. Then φ[⊕`] is a k`-CNF, which

we will show has resolution complexity
(

3
2

)(1−ε)n
Consider

any hypothetical resolution refutation of size less than this,
and apply random restriction ρ. By a union bound, for some
such ρ every clause of the restricted proof has a projection
of width less than (1 − ε)n, which implies none of the pro-
jections have intermediate semantic complexity.

Since ρ is conditioned never to set all variables to con-
stants, it is always true that φ[⊕`]|ρ is a substitution of φ.
By (the proof of) Observation 7.3, this implies the restricted
proof of φ[⊕`]|ρ thus obtained has no clause of semantic
complexity intermediate between γn and 2γn, contradicting
subadditivity of the semantic measure. Since k` = Õ

(
1
ε4

)
this shows φ[⊕`] satisfies the claim.

8. CONCLUDING REMARKS
We have demonstrated that there exist tautologies on n

variables which require resolution width (1−ε)n and regular

resolution proofs of size 2(1−ε)n, for any ε > 0. Moreover,
these tautologies may be taken to be k-CNF’s for k = Õ(1

ε
)4.

In general resolution we obtain lower bounds of (3/2)(1−ε)n.
A good question is how closely this can be made to match

the performance of k-SAT algorithms like PPSZ. Can we get
results for general resolution matching those we obtained
in regular resolution? Can we find k-CNF’s which require
resolution width (1−O(1/k))n?

9. REFERENCES
[1] P. Beame, C. Beck, and R. Impagliazzo. Time-space

tradeoffs in resolution: Superpolynomial lower bounds
for superlinear space. In Proceedings of the 44th
Annual ACM Symposium on Theory of Computing
(STOC ’12), pages 213–232, May 2012.

[2] P. W. Beame and T. Pitassi. Simplified and improved
resolution lower bounds. In Proceedings 37th Annual
Symposium on Foundations of Computer Science,
pages 274–282, Burlington, VT, Oct. 1996. IEEE.

[3] E. Ben-Sasson and R. Impagliazzo. Random CNF’s
are hard for the polynomial calculus. In Proceedings
40th Annual Symposium on Foundations of Computer
Science, pages 415–421, New York,NY, Oct. 1999.
IEEE.

[4] E. Ben-Sasson and A. Wigderson. Short proofs are
narrow – resolution made simple. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of
Computing, pages 517–526, Atlanta, GA, May 1999.

[5] S. Buss, D. Grigoriev, R. Impagliazzo, and T. Pitassi.
Linear gaps between degrees for the polynomial
calculus modulo distinct primes. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of
Computing, pages 547–556, Atlanta, GA, May 1999.

[6] V. Chvátal and E. Szemerédi. Many hard examples for
resolution. Journal of the ACM, 35(4):759–768, Oct.
1988.

[7] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Communications of the
ACM, 5(7):394–397, July 1962.

[8] M. Davis and H. Putnam. A computing procedure for
quantification theory. Communications of the ACM,
7:201–215, 1960.

[9] Z. Galil. On the complexity of regular resolution and
the Davis-Putnam procedure. Theoretical Computer
Science, 4:23–46, 1977.

[10] D. Grigoriev. Linear lower bound on degrees of
Positivstellensatz calculus proofs for the parity.
Theoretical Computer Science, 259:613–622, 2001.

[11] L. K. Grover. A fast quantum mechanical algorithm
for database search. In G. L. Miller, editor, STOC,
pages 212–219. ACM, 1996.

[12] A. Haken. The intractability of resolution. Theoretical
Computer Science, 39:297–305, 1985.

[13] A. Haken and S. A. Cook. An exponential lower
bound for the size of monotone real circuits. Journal
of Computer and System Sciences, 58:326–335, 1999.

[14] T. Hertli. 3-sat faster and simpler - unique-sat bounds
for ppsz hold in general. In R. Ostrovsky, editor,
FOCS, pages 277–284. IEEE, 2011.

[15] R. Impagliazzo, W. Matthews, and R. Paturi. A

satisfiability algorithm for ac0. In Y. Rabani, editor,
SODA, pages 961–972. SIAM, 2012.

[16] R. Impagliazzo and R. Paturi. On the complexity of
k-SAT. Journal of Computer and System Sciences,
67:367–375, 2001.

[17] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds
for the polynomial calculus and the Gröbner basis
algorithm. Computational Complexity, 8(2):127–144,
1999.

[18] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An
improved exponential-time algorithm for k-sat. J.
ACM, 52(3):337–364, 2005.

[19] R. Paturi, P. Pudlák, and F. Zane. Satisfiability
coding lemma. In FOCS, pages 566–574. IEEE
Computer Society, 1997.

[20] P. Pudlák and R. Impagliazzo. A lower bound for dll
algorithms for k-sat (preliminary version). In D. B.
Shmoys, editor, SODA, pages 128–136. ACM/SIAM,
2000.

[21] R. Raz. Resolution lower bounds for the weak
pigeonhole principle. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of
Computing, pages 553–562, Montreal, Quebec,
Canada, May 2002.

[22] A. A. Razborov. Improved resolution lower bounds for
the weak pigeonhole principle. Technical Report
TR01-055, Electronic Colloquium in Computation
Complexity, http://www.eccc.uni-trier.de/eccc/,
2001.

[23] A. A. Razborov. Resolution lower bounds for the weak
functional pigeonhole principle. Technical Report
TR01-075, Electronic Colloquium in Computation
Complexity, http://www.eccc.uni-trier.de/eccc/,
2001.

[24] J. A. Robinson. A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23–41,
Jan. 1965.

[25] The international SAT Competitions.
http://www.satcompetition.org.

[26] G. Schoenebeck. Linear level lasserre lower bounds for
certain k-csps. In FOCS, pages 593–602. IEEE
Computer Society, 2008.

[27] U. Schöning. A probabilistic algorithm for k-SAT and
constraint satisfaction problems. In Proceedings 40th
Annual Symposium on Foundations of Computer
Science, pages 410–414, New York,NY, Oct. 1999.
IEEE.

[28] J. Simon and S.-C. Tsai. On the bottleneck counting
argument. Theor. Comput. Sci., 237(1-2):429–437,
2000.

[29] G. Tseitin. On the complexity of derivation in
propositional calculus. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning,
pages 466–483. Springer, Berlin, 1983.

[30] A. Urquhart. Hard examples for resolution. Journal of
the ACM, 34(1):209–219, Jan. 1987.

[31] R. Williams. Non-uniform acc circuit lower bounds. In
IEEE Conference on Computational Complexity, pages
115–125. IEEE Computer Society, 2011.

