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Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R 
bits that appear random to any algorithm that runs in SPACE(S).  In particular, any randomized 
polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits. 
An application of these generators is an explicit construction of universal traversal sequences (for 
arbitrary graphs) of length n O(l~ 

The generators constructed are technically stronger than just appearing random to space- 
bounded machines, and have several other applications. In particular, applications are given for 
"deterministic amplification" (i.e. reducing the probability of error of randomized algorithms), as 
well as generalizations of it. 

1. I n t r o d u c t i o n  

Randomness  is an impor tan t  computa t ional  resource. There  are many  problems 
for which the known randomized algori thms are more efficient than  the deterministic 
ones. The randomized algori thms may use less time, less space, less communicat ion,  
less of other  computa t ional  resources, or just  be simpler than  their deterministic 
counterparts .  Viewing randomness  as a resource, it is natural  to t ry  to reduce the 
amount  of randomness,  the number  of r andom bits, used by randomized algorithms. 
The most  general mechanism for doing such a thing is by using pseudorandom 
generators ([4,20]). 

A pseudorandom generator  converts a short  t ruly random seed into a long string 
which can be used instead of truly random bits in any polynomial  t ime algorithm. 
It  can thus be used to reduce the number  of r andom bits used in any polynomial  
t ime algori thm (down to the length of the short r andom seed). Unfortunately,  pseu- 
dorandom generators are only known to exist under  the unproven assumpt ion tha t  
one-way functions exist ([9]). Moreover, the existence of one-way functions, an as- 
sumpt ion  which is seemingly even stronger than  P ~ N P ,  is a necessary requirement 
for the existence of polynomial  t ime computable  pseudorandom generators. 

A more specialized approach for saving random bits is to  construct  pseudoran- 
dom generators for some specific subclass of algorithms; and to do this without relying 
on any unproven assumptions. The first such result is due to Ajtai  and Wigderson 
([3]) who construct  generators which look r andom to all polynomial  size constant  
depth  circuits. In  [15], Nisan and Wigderson give an improved construction, and 

AMS subject classification code (1991): 68 Q 15 
*This work was done in the Laboratory for Computer Science, MIT, supported by NSF 865727- 

CCR and ARO DALL03-86-K-017 



450 NOAM NISAN 

generalize it to show how "lower bounds" for a complexity class C can be used to 
construct a generator that looks random to any algorithm from C. 

Iii [5], Babai, Nisan and Szegedy consider classes of space-bounded algorithms 
and construct generators which look random to all Logspace algorithms (or in general, 
any "small" space algorithms). In this paper we give an improved construction of a 
pseudorandom generator for space-bounded computation. Our construction is based 
upon universal hash functions (Carter, Wegman [7]), and is totally different from 
the one in [5]. The generator is very efficient as it requires one hashing operation on 
n-bits strings (typically one modular multiplication) for every n bits generated; it is 
also in NC. 

Theorem 1. There exists a fixed constant c > 0 such that for any R and S there 
exists an (explicitly given) pseudorandom generator which converts a random seed 
of length eSlogR to R bits which cannot be distinguished from truly random bits 
by any algorithm running in space(S). 

In particular O(log 2 n) random bits are sufficient to produce a polynomial num- 
ber of bits which look random to any Logspace machine. This is an exponential 
improvement over the generators constructed in [5], which require exp(lox/l-0-~) ran- 
dom bits. 

As an immediate corollary we get that any randomized polynomial time algo- 
rithm that runs in Space(S) can be simulated in polynomiM time using at most 
O(Slogn) random bits (and O(Slogn) space). 

Our generator implies what may be considered a black box version of the ran- 
domized analogue of Savitch's theorem: Not only can RSPACE(S)  be simulated 
deterministically in DSPACE(S2),  but the simulation is the same for all random- 
ized space(S) algorithms: Simply run the algorithm with every possible output string 
of the generator. 

As shown in [5] pseudorandom generators for space-bounded machines allow 
explicit constructions of universal traversal sequences (as defined in Aleliunas et 
al. [1]). The generators obtained in [5] give constructions of universal traversal 
sequences of length exp(exp(ox/I-o-~)) for arbitrary regular n-vertex graphs. The 
only other explicit constructions known are for the special cases of degree 2 graphs 
(a polynomial length construction due to Istrail [10]), and degree n -  1 graphs 
(an n O(l~ construction due to Karloff et al. [13]). We achieve an exponential 
improvement over known results for general graphs, matching the construction for 
degree n -  1 graphs. 

Theorem 2. There exist (explicitly given) universal traversal sequences of length 
n O(l~ for regular n-vertex graphs. Moreover, the sequences can be produced by 
a deterministic Turing machine running in space logarithmic in the length of the 
sequence. 

The generator we construct actually looks random to a more general class of 
algorithms. The generator outputs the pseudorandom bits in "blocks" of a certain 
size. It turns out that the space bound on the algorithm is only necessary between 
the different blocks, while within each block no limitation is needed. This fact allows 
the generator to be used for several other applieations. 

Consider the following problem: Given are k randomized algorithms A1,. . . ,  Ak, 
each requiring at most R random bits. Our task is to run all of them such that the 



PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 451 

probability that they all succeed is (to within an error of ~) equal to the product of the 
individual success probabilities. We define a generator to be a pseudo-independent 
block generator if its output can be used for such a task for every choice of A1,.. .  Ak. 
(In this definition "succeed" can be replaced by "reject", "find a witness", "prints 
17", etc; a formal definition appears in section 5.) 

A special case of this problem, "deterministic amplification", has been widely 
studied (see below), but the first nontrivial solution to this general problem is 
(implicitly) given by Impagliazzo and Zuckerman in [11]. The construction allows 
running k = O ( v ~ )  many algorithms with ~ = e x p ( - v ~ )  while using only O(R) 
random bits. Our generator can be used to run a much larger number of algorithms, 
and with a smaller value of c but incurring a small additional cost in the number of 
random bits needed. 

Theorem 3. Any k algorithms, each using R random bits, can be run using O( Rlog k ) 
random bits, such that the probability that they all succeed is within 2 -R  of the 
product of the individuM success probabilities. 

The special case where A1,... ,  Ak are all repetitions of the same algorithm, and 
our only aim is to reduce the probability that they all fail (not necessarily close 
to the optimal value obtained from independent runs) is called the deterministic 
amplification problem. The possibility of deterministic amplification was pointed 
out, nonconstructively, by Sipser [18] and Santha [17]. The first constructions were 
obtained by Karp, Pippenger and Sipser [12], and Chor and Goldreich [6] who reduce 
the failure probability down to 1/p(n) for any polynomial p(n), while still using only 
O(R) random bits. Reduction to an exponentially small probability of failure ("quasi- 
perfect pseudorandom generation" in the terminology of Vazirani [19]) was recently 
obtained by Cohen and Wigderson [8] and Impagliazzo and Zuckerman [11]. The only 
construction that reduces the error probability as much as we do (to exp(-R))  while 
using fewer random bits is, as shown in [8,11], due to Ajtai, Komlds and Szemer@di 
[2] and requires the explicit constructions of constant degree expanders. Our results 
also apply to randomized algorithms with 2-sided error, and also to algorithms that 
have only a polynomially small probability of success (the constructions of [2] and 
of [11] do not yield good bounds in this last case). 

Many algorithms can be naturally broken into "stages" such that each stage 
requires a small number of random bits and the space required between the different 
stages is small. In all these cases the number of random bits required can be reduced 
by using the output of the generator instead of truly random bits. As an example 
we show how O(nlogn) random bits suffice for uniformly generating a random n-bit 
prime number. 

The paper is organized as follows. In section 2 we make some necessary defi- 
nitions including the definition of the class of algorithms that our generator fools. 
Section 3 contains the construction of the generator. In section 4 we give the applica- 
tions regarding space-bounded computation. Section 5 discusses pseudo-independent 
block generators and deterministic amplification. Finally, in section 6, the example 
of generating random primes is given. 
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2. Def init ions  and N o t a t i o n  

2.1. Requirements of the Generator 

The generators we construct  produce their ou tpu t  broken into blocks, each n 
bits long. They  "fool" every program tha t  accepts its r andom bits an n-bit  block at 
a time, and tha t  uses at most  Space(w) between the different blocks 1. We say tha t  
such a program uses Space(w) with block- size n. We model  such a program by a 
finite state machine of size 2 w, over the a lphabet  {0,1} n (with a fixed star t  state, 
and an arbi t rary  number  of accepting states). Each state of the FSM corresponds 
to a possible configuration of the original program between the blocks. Each edge 
(v,u) of the FSM is labeled by a subset of {0,1} n, which is the set of n-bit  strings 
which when accepted as the random block cause the original program to move from 
configuration v to configuration u; for each vertex v, each n-bit  str ing thus appears  
in exactly one of the outgoing edges. From this point  on we phrase everything in the 
language of such FSMs. 

Definition 1. A generator  G :  {0,1} m --* ({0,1}n) k is a pseudorandom generator for 
space(w) and block size n with parameter c if for every FSM Q of size 2 w over 
a lphabet  {0,1} n we have tha t  

IPry[Q accepts y] - Prx[Q accepts G(x)] I < 

where y is chosen uniformly at r andom in ({0,1}n) k and x in (0,1} m. 

2.2. Universal Hashing 

Our generators are based upon universal hash functions (Carter,  Wegman  [7]). 
Formally, let H be a set of functions h: {0,1}n--~ {0,1} m. 

Definition 2. (Car te r -Wegman)  H is called a universal family o/hash functions if for 
any Xl •x2 E {0,1} n and Yl,Y2 E {0,1} m we have tha t  

Prheg[h(Xl) = Yl and h(x2) = Y2] = 2-2m- 

It is only impor tant  for this paper  tha t  it is possible to efficiently give small 
universal families of hash functions, i.e. such tha t  each h E H can be represented by 
at most  O(n § m) bits, and such tha t  comput ing  h(x) given the representations of 
h and x is efficient. An  example of such a family is convolution: Let x be an n-bit  
string, a an m + n -  1 bit string, and b an m-bit  string. Denote by a ,  x the m-bi t  

n convolution of a and x (i.e. the j ' t h  bit of a*x is ~i=l ai+j-lXi (m~ 2)), and by 
c§ the bit-wise exclusive-or of the vectors b and c. The family H= { ( a , x ) + b i n ,  b} 
is a universal family of hash functions (see e.g. [14]). 

1 Our measurement of space includes all information regarding the configuration of the machine. 
For Turing machines this includes the state of the finite control, the location of the heads, and the 
contents of the work tapes, all measured in bits. This inflates by at most a constant factor the space 
requirement of any machine that uses at least space S(n)= ~(logn). 
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3 .  T h e  G e n e r a t o r  

Before describing the generator we need to prove a certain useful property of 
universal families of hash functions. This property is of independent interest, and 
indeed a variant of it has already been used for proving time-space tradeoffs by 
Mansour et al. in [14]. 

3.1. A Proper ty  of Universal Hash|ng 

The main trick used in the pseudorandom generator is to replace the usage of 
two random strings x and y with one random string x, and use h(x) for y. For this 
to work we require some kind of "independence" between the values of x and h(x). 
This independence is not information theoretic, but rather only relative to a specific 
application. We now define exactly the kind of independence we require: 
Definition 3. Let A C {0,1} n, B C {0,1} m, h: {0,1} n --* {0,1} m, and e > 0. We say 
that  h is (e,A,B)-independent if 

[PrxE{O,1}~[x E A and h(x) E B] - Q(A)Q(B)I _< 

where Q(A)= IAI/2 n and g ( B ) =  ]BI/2 m. 

Lemma 1. Let A C {0,1} n, B C {0,1} m, H be a universal family of hash functions 
h: {O, 1}n---+{O, 1} m, and e>O, then 

PrheH[h isn't (~, A, B)-independent] < Q(A)0(B)(1 - Q(B)) 
--  2n~2 

where h is chosen uniformly at random in H. 

Proof. Consider the matr ix  M, having a row for each x E {0,1} n and a column for 
each h E H, given by M(x, h) = 1 if h(x) E B, and M(x, h) = 0 otherwise. Define now 
f(h) = ExEAM(x,h ) = PrxeA[h(x ) E B] and denote p = Q(B). First note that  the 
expected value of f (over all h E H)  is p - this is simply because for every fixed x, 
h(x) is uniformly distributed when h is chosen at random. Next, observe that  by the 
definition of (e, A, B)-independence, h is (e, A, B)-independent iff 

]p - f(h)[ < e/Q(A) 

We will bound the variance of f from above, and will then be able to conclude 
that  for "most" h, f(h) is indeed very close to p. 

Var(f)  = EhEH( p -- ExEAM(X , h)) 2 ---- 

ExlEA,x2EAEhEH(p -- M(xl ,  h))(p - M(x2, h)) 

Rearranging, and recalling that  for every x, EheHM(x , h)=p, we get that  

Var(f)  = ExleA,x2EAEheHM(xl, h)M(x2, h) - p2 

This quantity is evaluated by looking at the two cases: Case 1 (happens with 
probabili ty 1 - 1/IA1): x l  5 x2. In this case we use the definition of universal 
hash functions, and since h(xl)  and h(x2) are distributed independently when h is 
chosen at random we have that  Eh~HM(Xl,h)M(x2,h) = p2. Case (2) (happens 
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with probability 1/IAI): x l  --x2. In this case M(x l ,  h)M(x2, h) = M ( x l ,  h) and thus 
EheHM(Xl ,  h)M(x2, h) =p. We thus get 

Var( f )  = (1 - 1/[AI)p 2 + (1/IAI) p - p2 = Q(B)(1 - o(B)) 
[A[ 

By Chebychev's theorem applied to the random variable f (h) ,  for any 5 > 0 we 
have that: 

Q(B)(1 - Q(B)) 
PrhcH[Ip -- f(h)l >_ 5] <_ 

IA[5 2 
The lemma is implied by letting 5 = e/Q(A). | 

Consider the special case where m = 1, B = {1}, and IHI = 2 n. In this case our 
matrix M is essentially a Hadamard  matrix (with entries 0,1 instead of 1,-1), and 
the statement of the lemma is a well known property of Hadamard  matrices. Our 
lemma can be thought of as a natural  generalization of this fact. 

3.2. More Notat ion 

Let Q be a FSM with 2 w states over alphabet {O, 1} n and let D be any distri- 
bution on ({0,1}n) k (sequences of k n-bit strings). We denote by Q(D) the matrix 
whose ( i , j ) ' t h  entry is the probability of getting from node i in Q to node j via a ran- 
dom y E ({0,1}n) k drawn according to distribution D. We denote by Un the uniform 
distribution on n-bit strings, and by (Un) k the uniform distribution on sequences of 
k n-bit  strings. 

I t  will be convenient to measure the distance between the effects of two distribu- 
tions D1,D2 on a FSM Q by the 1 - n o r m  of the difference matrix Q ( D 1 ) - Q ( D 2 ) .  
For a vector x E :~s we define I[xN = ~ I xil, and for a s • s real matrix M We define 

lixMII 
HMN= sup 

0exEcs ]lxll 

All norms appearing in this paper are these 1-norms. The following facts are stan- 
dard: 

1. ][M + N[[ <_ HM[t + [[N[I 
2 IIMN[l lIMl[lINll 
3. I[Mll =ma iEj IMij[ 
4. If each entry of an s•  matrix M is bounded in absolute value by ~ then [[M H _< 

8g .  

5. If M is a transition probability matrix, i.e. all entries are non negative, and the 
sum of entries in each row is 1, then [[M[I = 1. 

3.3. The Generator 

Fix H,  a universal family of hash functions h: {0,1} n --* {0,1} n. For every integer 
k _> 0 we define a generator 

G k :  {0,1} n • H k --* ({0,1}n) 2k 

Gk is defined recursively by 
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and 

Gk(x, h l , . . . , h k )  = 
Gk_l (X, hl, . . . , hk_l) o Gk_l ( hk(x), h l , . . . ,  hk_l) 

Here o means concatenation of the two sequences of strings. 
For any fixed choice of h i , . . . ,  h k, denote by Gk(*, h i , . . . ,  hk) the distribution of 

Gk(x, h i , . . . ,  hk) induced by a random choice of x. 
The generator has the property that for almost all choices of h i , . . . ,  hk, the dis- 

tribution Gk(*, h l , . . .  ,hk) is "close" to the uniform distribution. Here the closeness 
property is relative to a fixed FSM Q. We now define this exactly. 
Definition 4. Let Q be a FSM over alphabet {0,1} n, ~ > 0, and h i , . . . ,  hk : {0, 1} n--* 
{0, 1} n. Then the sequence (h l , . . . ,  hk) is called (~, Q)-good if 

[IQ(Gk(*, h i , . . . ,  hk)) - Q((Un)2k)H <_ e 

Lemma 2. Let S be a universal family of hash functions h: {0,1}n--* {0,1} n. Let Q 
be a FSM of size 2 w over alphabet {0,1} n, let s>0 ,  and let k be any integer then 

Pr[ (h l , . . .  hk) is not ((2 k - 1)~, Q)-goo(~ < 26Wk 
, _ ~22n 

where h l , . . .  ,hk are chosen uniformly at random in H. 

Proof. The proof is by induction on k. For k--0 the statement is trivial. Assume it 
is true for k -  1 and prove for k. 

Choose h l , . . . ,  hk at random from H. For every fixed choice of h l , . . . ,  hk-1, and 
for every two nodes i , j  of Q define the sets: 

Bh~,'"'hk-1 = 

{xl Gk-l (X,  h l , . . . ,  hk-1) takes i to j} 

Consider the following two events: 
1. (h l , . . . , hk -1)  is ((2 k - l -  1)~,Q)-good. (Informally, h l , . . . , hk_  1 were chosen 

"well" .) 

2. For every triplet of nodes i, l, j: h k is (2-2We, Bh}'""hk-l,B~,j ..... hk-1)_ 

independent. (Informally, hk is chosen "well".) 
We claim that (1) The probability that  both events happen simultaneously is at 

26W k 
least 1 - - - ~ - ,  and (2) When both events happen, (h l , . . . ,  hk) is ((2k--1)r Q)-good. 

These two claims imply the lemma. 
Proof of Claim 1. The probability of event 1 not happening is bounded by 

26W(k- 1) 
the induction hypothesis to be at most r We now bound the prob- 

ability of event 2 not happening. Consider a fixed choice of h l , . . . , hk_  1. 
By Lemma 1 we get that for any fixed triplet of nodes i , l , j  the probabil- 
ity that  h k is not (2-2Wc, Bh~'"hk-l ,B~,j  ..... hk-1)-independent is bounded by 



456 NOAM NISAN 

24w~lB hi ..... hk -1)C-22-n .  Summing up over all triplets i , t , j ,  and recalling that  
~ i , l  

x-~ t B h l , . . . , h k - 1  for every fixed i 2_.,I ~ i,l ) = 1, we obtain that the probability of event 2 
26w 

not happening is bounded by r  Adding the probabilities of events 1 and 2 not 

happening, we conclude the proof of claim 1. 

Proof  of Clair- 2. Assume that events 1 and 2 hold. We can estimate 
2 k 

I I Q ( G k ( * , h l , . . . , h k ) ) - Q ( ( U n )  )11 from above by: 

2 k 
I l Q ( G k ( * , h l , . . . , h k ) )  - Q((Un)  )]l <- 

IIQ( Gk(  .,  h i , . . . ,  hk ) ) - Q( G k - I  ( * , h i , . . . ,  hk-1))2[l+ 

HQ( Gk_ I ( *, hl ,  . , hk_ l  ) ) 2 2e 
�9 . - Q ( ( V n )  )l[. 

We will bound the first summand by ~, and the second by (2 k -  2)~. This implies 
claim 2, and will conclude the proof of the lemma. 

Consider the matrix Q(G k(*, h i , . . . ,  hk)). By the definition of Gk, its i , j  entry 
is given by 

Bhl,...,hk-1 Bhl,. . . ,hk-ll E P r x [ x E  i,l and hk(x)  E l,j J" 
l 

On the other hand, consider the matrix Q ( G k - l ( * , h l , . . . , h k - 1 ) )  2. Its i , j  entry is 
given by 

E ,Bh~,...,hk_1, iBhl,...,hk-1 Q~ ~,l )Q~ l,j )" 
1 

Since event 2 holds we get that each entry i , j  of the matrix Q ( G k ( , , h l , . . .  , hk) ) - 
Q ( G k - I ( * ,  h l , . . . ,  hk-1)) 2 is bounded in absolute value by 2-we. It follows that the 
norm of this matrix is at most c. 

2 ~ l )  { (U, ~2 k - 1  Now consider the second summand. Note that Q((Un) ) = ~  nj )2  thus 
the second summand can be rewritten as 

2 k - 1  2 I I Q ( G k - l ( * , h l , ' . . , h k - 1 ) ) 2 - Q ( ( U n )  ) I1" 
2 k 1 

Denote Q ( G k _ l ( * , h l , . . . , h k _ l ) )  by M, and Q((Un) ) by N, then we can bound 

JIM 2 - Y2[[ _< [[MHI[M - NIl + IIM - NHIlNI[. 

Event 1 means that J IM-NI l  is bounded by (2k-1-1)r  The norms of M and N are 
1 since they are transition probability matrices. It follows that  the second summand 
is bounded by (2 k -  2)~. I 

In conclusion we have: 

Lemma 3, There exists a constant c > 0 such that  for all integers n and k <_ cn we 

have that  Gk : {0,1} n x H k --+ ({0,1}n) 2k is a pseudorandom generator for space( cn ) 
and block-size n with parameter 2 -on. 

Proof. Let Q be a FSM, our aim is to bound the difference between Pr[Q accepts y] 

where y is chosen uniformly in ({0,1}n) 2k , and Pr[Q accepts Gk(x ,  hi ,  . . . ,  hk) ] where 
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x is chosen uniformly in {0,1) n and hl , . . . ,  ha in H. This difference we bound from 
above by 

Pr[(hl , . . . ,  hk) is not (~, Q)-good]+ 

I Pr[Q accepts y] - Pr[Q accepts Gk(x , h i , . . . ,  hk) I h i , . . . ,  hk is (e, Q)-good] I 

(where ~ is chosen below.) 
Let us first evaluate the second term. Fix ~ > 0 and any choice of (hl, . . . ,hk) 

which is (~, Q)-good. Let lstar t be the probability distribution concentrated on the 
starting state of Q, and let laccept be the vector having l 's  on all the accepting 
states of Q (and O's elsewhere). The probability that  Q accepts y is given by 

lstart.Q((Un)2k).laccept and the probability that Q accepts G(x, hl , . . .  , hk) is given 
by lstar t. Q(G(*, h l , . . . ,  hk))'laccept. The difference is thus given by 

2 k 
lstart" (Q(G(*, h l , . . .  , hk) ) - Q((Un) ))" 1accept 

Since 1start has a 1-norm of 1, and 1accept has all of its entries bounded in absolute 
value by 1, the above expression is bounded in absolute value by 

2 k 
HQ(G(*,hl, . . . ,hk)) - Q(Un )ll -< 

Using Lemma 2, the probability that  (h l , . . . ,  hk) is not (e,Q)-good is bounded 
22k26cn k 

from above by ~22n . We require the total difference in probability of/acceptance 

22cn26cncn 
to be at most 2 -ca,  for all k<cn. This is obtained when ~+ ~22n <2  -ca,  an 

inequality which can be satisfied for e.g. c= 0.05 and ~ = 2 -ca-1 .  1 

4. G e n e r a t o r s  for  S p a c e - B o u n d e d  C o m p u t a t i o n  

Definition 5. A generator G : {0,1} m --* (0,1} n is called a pseudorandom generator 
for space(S) with parameter ~ if for every randomized space(S) algorithm A and 
every input to it we have that 

IPr[A(y) accep ts ] -  Pr[A(G(x)) accepts]l < 

where y is chosen uniformly at random in {0,1} n, and x uniformly in {0,1} m. 
In the above definition, it is implied that  the algorithm A is being run on its 

input while accessing the bits of y or of G(x) as the random coin tosses. For a more 
detailed definition and discussion of pseudorandom generators for space bounded 
computation refer to [5]. 

Proposition 1. Let G: {0,1} m --+ ({0,1}n) k be a pseudorandom generator for space(S) 
and block size n with parameter  ~ then G is a pseudorandom generator for space(S) 
with parameter  e (where we concatenate the strings output by G to obtain a kn-bit 
long string). 
Proof. Given a space(S) algorithm A and an input to it, we build a FSM Q of size 
28 consisting of all of A's configurations. We label each edge (i,j) with the set of n -  
bit strings that cause A to move from configuration i to configuration j after being: 
accepted as the next n coin tosses. The proposition now follows from definitions. 1 
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By using the generators Gk obtained in section 3, using a family of universal 
hash functions with linear size descriptions we get: 

Theorem 1. For any R = R(n) and S -- S(n) there exists an (explicitly given) pseu- 
dorandom generator G : {0,1} O( Sl~ R/ S) ) --~ {0,1} R for space(S) with parameter 
2 -8.  Moreover, G can be computed in polynomial time (in R and S) and O(SlogR) 
space. 

This implies that  randomized polynomial t ime algorithms that  run in space(S) 
can be simulated using O(Slogn) random bits. 

Corollary 1. Any randomized algorithm running in space(S) and using R random 
bits may be converted to one that uses only O(SlogR) random bits (and runs in 
space( O( Slog R) ) ). 

In fact, the extra  logR factor in the space is only due to the necessity of storing 
the random bits. If  the random bits are given as input (say, on a special tape of the 
Turing machine with 2-way access to it allowed) then the generator can be computed 
in space(S), and so can the simulation. 

Pseudorandom generators for Logspace can be used for explicit constructions 
of universal traversal sequences. For definitions of universal traversal sequences see 
[1]. In [5] it is shown that  the concatenation of all possible output  strings of a 
pseudorandom generator for Logspace is a universal traversal sequence. Using our 
generator we obtain: 

Theorem 2. For all n and 2 < d < n - l ,  there exist (explicitly given) universal traversaI 
sequences of length n O(l~ for d-regular n-vertex graphs. Moreover, the sequences 
can be produced by a Turing machine running in space logarithmic in the length of 
the sequence. 

5. Pseudo-independent  Block Generators 

We are interested in generators whose output  may be used to run several random- 
ized algorithms, with the property that  it "looks" as though the different algorithms 
got independent random strings. Formally: 

Definition 6. Let G: {0,1} m --+ ({0,1}n) k, and s > 0, G is called a pseudo-independent 
block generator with parameter ~ if for any sequence of sets A1, . . . ,Ak C {0,1} n we 
have that  

IPr[yl E A1 and . . .  and Yk E Ak] - P l . . . P k [  <- c 

IA~I and the probability where Yi denotes the i ' th  n-bit string produced by G, Pi = -~- 
is taken over a random input to G. 

By going over the proofs of [11], it is not difficult to verify that  the generator 
proposed there is in fact a pseudo-independent block generator. The generator uses 
only linearly (in R) many random bits and produces k = O ( v ~ )  strings with param- 
eter ~ = e x p ( - x / ~ ) .  Our generator is also a pseudo-independent block generator, 
and can be used for larger values of R and smaller values of c. It requires, however, 
slightly more random bits. 
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Proposition 2. Let G : {0,1} m --~ ({0,1}n) k be a pseudorandom generator for 
space(log(k+2)) and block size n with parameter e, then G is a pseudo-independent 
block generator with parameter  e. 

Proof. We build a FSM Q with states 0. . .  k and an extra fail state. The start  state 
is state 0, and the only accepting state is state k. Each edge ( i - 1 ,  i) is labeled with 
the set of n-bit strings in Ai, and each edge ( i -  1, fail) is labeled with the strings 
not in A i. The proposition now follows from definitions. | 

Using our generator we obtain: 

Theorem 3. There exists a constant e > 0 such that for any integers R and k <_ 2 R 
there exists an (explicitly given) pseudo-independent block generator with parameter 
2 -R that converts eRlogk random bits into k strings of length R. 

Proof. Use the generator assured by Lemma 3, for space R, block size R, parameter  
2 -R ,  that  produces k R-bit strings. (In fact, Lemma 3 gives larger block size, but 
excess bits can be thrown away). Then apply Proposition 2. | 

As a special case we obtain deterministic amplification: Given any randomized 
algorithm that  uses R random bits and has success probability 1/2 and given k < 
R, we can run the algorithm k times using the output  of our generator. This 
requires only O(Rlogk) random bits and will reduce the probability of failure to 
(1+o(1))2 -k. Notice also that  even if the original algorithm had a success probability 
of only 1/poty(k) we could still run the algorithm poly(k) times, reducing the failure 
probability to 2 - k  and still using only O(Rlogk) random bits. 

These results are all s tated for algorithms with one-sided error 2, but they easily 
extend to algorithms which have 2-sided error (BPP-type algorithms) 3. 

6. O t h e r  Applications 

Many algorithms can be naturally broken into stages with the property that  only 
small space is required between the different stages and each stage uses only a small 
number of random bits. In all these algorithms it is possible to reduce the number 
of random bits used by using the output  of our generator instead of truly random 
bits (each stage of the algorithm gets a block that  is output  by the generator). We 
now give an example how a random n-bit prime can be chosen using only O(nlogn) 
random bits. We believe that  this is in itself interesting, but the main point we wish 
to make is that  the techniques used are very general, and can be used for a variety 
of problems. 

The following algorithm is the standard one used for uniformly generating prime 
numbers in the range 1 . . . N :  

1. Repeat  until success 

2 I.e. the algorithm is always correct on inputs not in the language and is correct with probability 
at least 1/2 on inputs in the language. Thus if any run of it says "yes" we can immediately conclude 
that the input is in the language 

3 I.e. algorithms which are always correct with probability of at least 2/3. In this case amplifi- 
cation is achieved by taking a majority vote of all runs of the algorithm. 
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1.1. Choose a random integer x in the range 1.. .  N.  
1.2. Test: is x prime? If "yes" then success:=true. 

2. Output  x. 
The expected number of times that  the loop is performed until a prime number 

is found is approximately i n N =  O(n) (since the density of prime numbers in 1. . .  N 
is approximately 1 / l nN) .  Even assuming, for now, that  we have a deterministic 
primality test, the algorithm requires an expected O(n 2) random bits. Using our 
generator we can reduce the number of random bits used to O(nlogn) without 
assuming a deterministic primality test, but using, e.g., the Rabin-Miller randomized 
primality test [16]. 

The basic step in this primality test uses O(n) random bits and detects non- 
primes with probability of at least 1/2. To get a test that  fails with exponentially 
small probability, the test is repeated O(n) times. We can now break the algorithm 
into stages: Choosing a random x is a stage, and a basic primality test is a stage. 
Note that  now each stage requires O(n) random bits, and that  the space required 
between any two stages is also O(n) (for storing x). We can thus use the output  of 
our generator for space O(n) and block size O(n), with parameter  2 -[~(n), instead 
of truly random bits. This requires only O(nlogn) random bits. 
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