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Abst ract

A certain pebble gane on graphs has been studied in various contexts
as a nodel for the time and space requirements of computations [1,2,3,8].
In this note it is shown that there exists a famly of directed acyclic

,y C such that

graphs G/ and constants ¢, ,c 3

1 2

(1) G, has n nodes and each node in Grl has indegree at nost 2 .

(2) Each graph G, can be pebbled with cl\/H pebbl es in n noves.

(3) Each graph G, can also be pebbled with cgdﬁ pebblcesn e, <y,
but every strategy which achieves this has at least =2 > nmoves.
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Let S(k,n) be the set of all directed acyclic graphs with n nodes
where each node has indegree at nost k .  On graphs Gt S(n, k) the
following one person game is considered. The gane is played by putting

pebbles on the nodes of G according to the follow ng rules:

(i) an input node (i.e., a node without a predecessor) can always be
pebbl ed;
(i) if all imediate predecessors of a node c have pebbles one

can put a pebble on c ;

(iii) one can always renove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e.,
a node without a successor) of G in such a way that the total nunmber
of pebbles which are simultaneously on the graph is mnimzed.

The ganme nodel s the tine and space requirenents of conputations in
the following sense. The nodes of G correspond to operations and the
pebbl es correspond to storage locations. |f a pebble is on a node this
means that the result of the operation to which the node corresponds is

stored in some storage location. Thus the rules have the follow ng meaning:

(i) input data are always accessible;

(i) if all operands of an operation are known and stored somewhere, the
operation can be carried out and the result be stored in a new

| ocation;

(iii) storage locations can always be freed.

By the rules a single node can be pebbled nany times. This corresponds to

recomputation of intermediate results.



In particular the game has been used to nodel tinme and space of
Turing machines [1,2] as well as length and storage requirements for
straight line progranms [8].

Known results about the pebble gane include

A Every graph Ge S(k,n) can be pebbled with ckn/log n pebbl es where

t he const ant Cy depends only on k [2].

B: There is a constant ¢ and a famly of graphs G ¢ s(2,n) such that
for infinitely mny n, G, cannot be pebbled with less than

cn/log n pebbles [4].

For nore results see [1,3,4,7,8].

By putting pebbles on the nodes of a graph G in topol ogi cal order
(i.e., if" there is an edge rrom node ¢ to node c', then c is pebbled
first) one can pebble each graph GesS(k,n) with n pebbles and n noves.
However the stragegy known to achieve ©0(n/log n) pebbles on every graph
uses exponential time. Thus it is a natural question to ask if there are
graphs Gy € S(k,n) such that every strategy which achieves a m ninal

nunber of pebbles requires necessarily exponential time. This is indeed

t he case.
Theorom. There exists a family ol graphs Gn cs(0yn) n=»14L2, . . . arid
constants ¢, , c,, , s 5 Cp < e such that for infinitely many n

(1) G, can be pebbled with clgn pebbles in n noves.

: K
(2) @, can also be pebbled with c,'n pebbles.

(3) Every strategy which pebbles G  using only c?«/n pebbl es has at

C_j, n
| east 2 noves.

Thus saving only a constant fraction of the pebbles forces the tine required

to grow from linear to exponential.



troof of the theorem As buil ding blocks for the graphs G, we need

certain special graphs. A directed bipartite graph is a graph whose nodes

can be partitioned into two disjoint sets N N. such that all edges lcad

1 T2
from nodes in N; to nodes in N, . A directed bipartite graph is an
n-i j -expander if |N;| = |N,[=n ( |A] denotes the cardinality

of A)and for all subsets N' of N2 of size n/i the follow ng holds:

|{c|CeNl and there is an edge fromc to a node in N'}| > n/j

Lemma 1. For n large enough there exist n-8/2 -expanders where the

indegree of each node in I, is exactly 16 .

lroof. Wth c-very function £: {1, . . .,en} - {1, ...,n} we

associate a bipartite graph G « S(e,on) With n dinputs and n  outyrut o
in the following way: The inputs and outputs are numbered from1l to n
and if f(j) =1 then there is an edge frominput i to output (j nod n)
Different functions may produce the same graph. A function f is bad

il therc is a set | of n/2 inputs and a set 0 of n/8 outputs such
that all edges into 0 cone froml . Oherwise the function f is
called good. Cearly if f is good G, is an n-8/2 -expander with the
desired properties.

In order to prove the existence of a good function we prove that the
fracti on o ¢ had functi on:; to al | such functi on:: tends with growming n to
zero [H,60].

- There are n . functions f: {1,...,en} - {1,...,n} . There are
(“r/lp)(nnp}‘) ways to choose n/2 inputs T and n/8 outputs O .

1{ '
en/8 en/8 . :
For cvery choice ol 1 and 0 there are @ /P) / ~n( / Iancetions

such that £ is bad because in Ge all edges into 0O cone from|



Hence there are at nost (nr/12 )(n?8).(n/2)cn/8.n7cn/8 bad functions.

Thus the fraction we want to estimate is

( n;lg) ( nl/18) . (n/z)cn/B . 1,17(:n/8/ncn

= ( n;lg )( nr/l8) /2cn/8 = 0(1) for ¢ > 16 . L

Let E! be an n-8/2 -expander as in Lemma 1. Construct E, from
E} by replacing for every output node v the 16 incom ng edges by a
complete binary tree with 16 leaves, identifying v wth the root of'
the tree and the predecessors of v with the leaves. CObviously
B, C s(2,16n) .

Let be the graph consisting of d copies of E E%,...,Eg

By a
where for 2 <i <d, the input nodes of E; are identified with the
output nodes of Et'l o Thus H e s(2, (15d+1)b) .

The set of output nodes of E; is called the i-th level. The input

nodes of Ei' formlevel O .

Lemma 2. H, 4 can be pebbled wth 2v+16 pebbles and (15d+1)b noves.

Proof . We say level i is full if all nodes of level i have pebbles.
The strategy is to fill the levels one after another. Each level is a cut
set. Thus once a new level i has been filled all pebbles above |evel i

can be renoved. Hence at npbst 2b pebbles have to be kept on two successive
levels. In the process of filling level i+1 if level iis full, the
16 extra pebbles are used on the trees between the levels. Because all

trees are disjoint except for the |eaves each node is pebbled exactly once. O



Lemma 3. i, 4 can bc pebbled With hd+2  pebbles.
- J

Proof . The depth of a node v is the nunber of edges in the |ongest
path intov . In a graph Ges(2,n) every node of depth t can be
pebbled with t+2 pebbles (this follows easily by induction on t ).

Every node in has depth at nost La . |

Hy 4

The crucial point is

Lemms, 4. For all ie {0,1,...,d} the following statenent holds: If ¢

is any configuration of at nmost b/8 pebbles on H o4 N is any subset
J

of level i s.t. |N|=1b/4, and Mis any sequence of noves, which

starts in configuration C, never uses nore than b/8 pebbles, and
during the execution of this sequence of noves each node in N has a

pebble at least once, then M has at | east o' nmoves.

Proof . By induction oni . For i = 0 there is nothing to prove.
Suppose the lemma is true for i-I . In configuration ¢ at nost b/8
pebbl es are on the graph. Thus for at least b/8 of the nodes v in N ,
no pebble is on v nor anywhere on the tree which joins v with level i-I
except possibly on the |eaves. Let N' be a subset of these nodes of
size b/8 and let P be the set of nodes in level i-1 which are
conneeted to N' . By construeti on of llb’d , ll’l > b/2 . Beceausc
none of the nodes in N' nor any node of their tree:: have pebbles except
for the leaves, during the execution of M each node in P nust have a
pebbl e at sone tine (possibly right at the start).

Divide the strategy Minto two parts M M, at the earliest move
such that duri ng M; wome b/h nodes of I have or have had pebbleg

and the remaining b/4 or more nodes of P have never had a pebble.

O



For M, the hypothesis of' the |emma applies; thus M; has at |east ol
moves.  Because M | eaves at nost Db/ 8 pebbles on the graph and M,
alvo never uces more Lhan /8 pebbles the hypolhesic also applics toM
Heneoe M,{_) has ol J v-u.;:lli‘j—’l moves Loo and  Uhe  lemma Collows. U

Choose b such that ki+2 < b/8 , e.qg. b = 32d+16 . Then any
strategy which pebbles any b/4 out put nodes of Hb)d using at nost
43+2 pebbl es has at | east ed moves. Thus for at |east one of these
nodcs v pebbling v alone with hdi 0 pebbles must requi re

Qd/(b/h) - >(1-8)d hves since b = Qd) . Now h = (15d+1)b is the nunber

of nodes of H

b g Hence d = O(’\/I’_l) and b = o(\/r:) and the theorem
)

follows. O

The above construction also yields:

Corol lary. There exists @ ramily of graph:; G 5(2,n)  such that for

every ¢ > 0 the followi ng holds: any strategy which pebbles G, usi ng

nl'e pebbl es has nore than polynonially many noves.

: 1-1/log log n _ |/1og log n
Proof . Choose anﬁb,d with b=n and d = O(n ) 0

An interesting open problemis: does there exist a famly of graphs
Gye 8(2mn) , n =1,2,... such that pebbling the graphs G with 0(n/log n)
pebbl es requires nore than polynomally many noves? As a first step toward
resolving this question, Pippenger [7] ha:: exhibited a famly of graphs
which require a non-linear nunber of noves when pebbled with 0(n/log u)

pebhblos,
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