
TIME-SPACETRADE-OFFS IN A PEBBLE GAME

bY

W. J. Paul and R. E. Tarjan

STAN-CS-77-619
JULY 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY





TIME-SPACE TRADE-OFFS IN A PEBBLE GAME

f*W. J. Paul -f**R. E. Tarjan

Fakultat ftir Mathematik Computer Science Department
der Universit%t  Bielefeld Stanford University
D-1+800 Bielefeld 1 Stanford, California 94305
Germany USA

Abstract

A certain pebble game on graphs has been studied in various contexts

as a model for the time and space requirements of computations [l-,2,3,8].

In this note it is shown that there exists a family of directed acyclic

graphs Gn and constants Cl 9 c2 9 c3 such that

(1) Gn has n nodes and each node in Gn has indegree at most 2 .

(2) Each graph Gn can be pebbled with cl& pebbles in n moves.

(3) Each graph Gn
can also be pebbled with c2& pebbles, c2 < cl ,

7r
but every strategy which achieves this has at least 2 c3 n moves.
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Grant No. h30/hO~/r;53/5.
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Let S(k,n) be the set of all directed acyclic graphs with n nodes

where each node has indegree  at most k . On graphs GE S(n,k) the

following one person game is considered. The game is played by putting

~)cbbl.cs  on the nodes of G according to the following rules:

(i> an input node (i.e., a node without a predecessor) can always be

pebbled;

(ii) if all immediate predecessors of a node c have pebbles one

can put a pebble on c ;

(iii) one can always remove a pebble from a node.

The goal of the game is to put a pebble on some output node (i.e.,

a node without a successor) of G in such a way that the total number

of pebbles which are simultaneously on the graph is minimized.

The game models the time and space requirements of computations in

the following sense. The nodes of G correspond to operations and the

pebbles correspond to storage locations. If a pebble is on a node this

means that the result of the operation to which the node corresponds is

stored in some storage location. Thus the rules have the following meaning:

(i> input data are always accessible;

(ii) if all operands of an operation are known and stored somewhere, the

operation can be carried out and the result be stored in a new

location;

(iii) storage locations can always be freed.

By the rules a single node can be pebbled many times. This corresponds to

recomputation of intermediate results.



In particular the game has been used to model time and spabe  of

Turing machines [1,2] as well as length and storage requirements for

straight line programs [8]. _

Known results about the pebble game include

A: Every graph GE S(k,n) can be pebbled with ckn,/log n pebbles where

the constant ck depends only on k [2].

B: There is a constant c and a family of graphs Gn E S(2,n)  such that

for infinitely many n , Gn cannot be pebbled with less than

en/log n pebbles [4].

For more results see [1,3,4,7,8].

By putting pebbles on the nodes of a graylh G in topological order

(i.e., if' there is <an edge I'rom node c to node c' , then c is pebbled

first) one can pebble each graph GcS(k,n) with n pebbles and n moves.

However the stragegy known to achieve O(n/log  n) pebbles on every graph

uses exponential time. Thus it is a natural question to ask if there are

graphs Gne S(k,n) such that every strategy which achieves a minimal

number of pebbles requires necessarily exponential time. This is indeed

the case.

Theol‘cm. 'l'hr_‘rc C.‘X i :: t :: 11 1’Ltltzi.l.y  d’ gra.&s Crl c :;(:),n)  , n = l,Z?, . . . arid

constants cIl , c,, , c3 f cp < Cl such that for infinitely many n
c-

(1) Gn I-can be pebbled with cln pebbles in n moves.

C2) Gn
r-can also be pebbled with c;,n pebbles.

(3) Every strategy which pebbles Gn using only c2dz pebbles has at

?i
-

least 2c3 n moves.

Thus saving only a constant fraction of the pebbles forces the time required

to grow from linear to exponential.
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I'roof of the theorem: As building b.locks for the graphs Gn we need

certain special graphs. A directed bipartite graph is a graph whose nodes

can be ljartitioned into two disjoint sets Nl , N
2

such that all edges lead

from nodes in Nl to nodes in N2 . A directed bipartite graph is an

n-i j -expander if Pq = IN2 I = n ( IAl denotes the cardinality

of A ) and for all subsets N' of N
2

of size n/i the following holds:

II IC c E Nl and there is an edge from c to a node in ~'31 > n/j .

Lemma 1. For n large enough there exist n-8/2 -expanders where the

indegree  of each node in
N2

is exactly 16 .

I 'Q-00 f'. With c-very f'unctrion I': {l, . . ..cn] -+ [7., . . ., n] we

a:;:;oc:iat,o a bil~artit~: graJ)h GI, c S(c,:?n) with n inI)u%s and n out-J rut :;

in the following way: The inputs and outputs are numbered from 1 to n

andif f(j)=i then there is an edge from input i to output (j mod n) .

Different functions may produce the same graph. A function f is bad

iI' there  is a set I of n/2 inputs and a set 0 of n/8 outputs such

that all edges into 0 come from I . Otherwise the function f is

called good. Clearly if f is good Gf is an n-8/2 -expander with the

desired properties.

In order to prove the existence of a good function we prove that the

t'ractj  or-1 o L' had f'unct,~  on:; to aI I such I'unct,:i on::

z(:ro [5,0].

( ,,y;)T;r arj

ncn functions f: (l,...,cn] +

n
n/n

ways to choose n/;, inputs T

I~‘or*  c’vc’ry choi(‘(’ 01’ I an(1 0 tll(~r~: arc: rl :)( I

tend:; with growing n t0

(1,...,n] . There are

and n/8 outputs 0 .

such that I is bad because in Gf
all edges into 0 come from I .
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Hence there are at most (nj2 )(nj8)  l (n/2)cn/8 l n7cn/8 bad functions.

Thus the fraction we want to estimate is

( $*) ( nj8)  l (n/2)cn�8  l n7cn�8/ncn

= ( ny2 )( $8) /2cn’8 = o(1) for c > 16 . il_

Let En be an n-8/2 -expander as in Lemma 1. Construct En from

Eil
by replacing for every output node v the 16 incoming edges .by a

cmplete binary tree with 10 leaves, identifying v with the root of'

the tree and the predecessors of v with the leaves. Obviously

Let Hb d be the graph consisting of d copies of Eb: $,,..,$
t .

where for 2 < i < d , the input nodes of I$ are identified with the- -

output nodes of
i-l
%

. Thus Hbdc S(2,(15d+l)b)  .
.

The set of output nodes of < is called the i-th level. The input

nodes of 4 form level 0 .

Lemma 2. %,d
can be pebbled with 2b+l6 pebbles and (15d+l)b moves.

Proof. We say level i is full if all nodes of level i have pebbles.

The strategy is to fill the lcvelc one after another. Each level is a cut

set. Thus once a new level i has been filled all pebbles above level i

can be removed. Hence at most 2b pebbles have to be kept on two successive

levels. In the process of filling level i+l if level i is full, the

16 extra pebbles are used on the trees between the levels. Because all

trees are disjoint except for the leaves each node is pebbled exactly once. 0



Lemma 3. %,d can bc I)cbbled with )ldl-;7 pebbles.

Proof. The depth of a node v is the number of edges in the longest

path into v . In a graph GE S(2,n) every node of depth t can be

pebbled with t+2 pebbles (this follows easily by induction on t ).

Every node in Hb d has depth at most 4d . c3
9

The crucial point is

&err-ma  4. For all ie [O,l,..., d] the following statement holds: If c

is any configuration of at most b/8 pebbles on Hb d , N is any subset
?

of level i s.t. IN\ = b/4 > and M is any sequence of moves, which

starts in configuration C , never uses more than b/8 pebbles, and

during the execution of this sequence of moves each node in N has a
.

pebble at least once, then M has at least 2i moves.

Proof. By induction on i . For i = 0 there is nothing to prove.

Suppose the lemma is true for i-l . In configuration C at most b/8

pebbles are on the graph. Thus for at least b/8 of the nodes v in N ,

no pebble is on v nor anywhere on the tree which joins v with level i-l

except possibly on the leaves. Let N' be a subset of these nodes of

size b/8 and let P be the set of nodes in level i-l which are

connclctcti to N’ . By con::tructi on of' lib
?
d , IlJ\ 2 b/2 . Uccausc

none of the nodes in N' nor any node of their tree:: have pebbles except

for the leaves, during the execution of M each node in P must have a

pebble at some time (possibly right at the start).

Divide the strategy M into two parts Ml , M2 at the earliest move

;;u(:li ih:tt, tlur:i rig Ml. ::ome b/4 node:: 01' 1' have or have had ;i)cbblc::

;w~cl the remaining v4 or more nodes of 1' have never had a pebble.



For Ml the hypothesis of' the lemma aJ)plies;  thus Ml has at least 2
i -I

moves. Because Ml leaves at most b/8 pebbles on the graph and M2

;t.l::o IlC!V('I' 11:;(':; lrlor'~‘ LlllLII t ,/2 }~~~l)t).Lc.: 1,lto h.-yt~oI,t~~~::i;:  :Ct;:o  :~t~t).l.i(>;:  Lo M , ,  .

1tc'ttc:c  M,, 11u::
,,.i -_I

:l.L  J I‘fl.;:L  c lrlov~!;: too ttild.  Ltlc  :Leunnr~ I’oJ-lows.  ti
L

Choose b such that 4d+2 5 b/8 , e.g. b = 32d+16 . Then any

strategy which pebbles any b/4 output nodes of Hb
,d

using at most

4d+2 pebbles has at least 2d moves. Thus for at least one of these

node:; v pebbling v alone with Jtd.-1  ? pebbles must rt!qu:i rc

2d/(b/4) ,, 2(1-e)d moves since b E O(d) . Now n z (15d+l)b is the number-

ofnodes of Hb d. Hence d = o(lm, and b = O(&) and the theorem
9

follows. Ll

The above constructjon ,iLso yields:

Corollary. Thcrc c1xis-L:: a I'atn51y  01' graph:; Cn ( S(;j,n) such that l'or

every s > 0 the following holds: any strategy which pebbles Gn using

1-En pebbles has more than polynomially many moves.

Proof. Choose Gn = Hb
,d

with b=n‘-‘/“g log n and d = Ob
l/log log n

> l cl

An interesting open problem is: does there exist a family of graphs

Gne S(2,n) , n = 1,2,... such that pebbling the graphs Gn with O(n/log n)

pebbles requires more than polynomially many moves? As a first step toward

rc>solving  this question, 15I~T~cngcr Ir7] ha:: exhibited a family oi‘ gral'h::

which require a non-linear number of moves when pebbled w-ith 0b/m 4
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